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Abstract

In this work the compressible Euler equations are solved using finite volume tech-

niques on unstructured grids. The spatial discretization employs a central difference

approximation augmented by dissipative terms. Temporal discretization is done using

a multistage Runge-Kutta scheme. A multigrid technique is used to accelerate conver-

gence to steady state. The coarse grids are derived directly from the given fine grid

through agglomeration of the control volumes. This agglomeration is accomplished

by using a greedy-type algorithm and is done in such a way that the load, which is

proportional to the number of edges, goes down by nearly a factor of 4 when moving
from a fine to a coarse grid. The agglomeration algorithm has been implemented and

the grids have been tested in a multigrid code. An area-weighted restriction is applied

when moving from fine to coarse grids while a trivial injection is used for prolongation.

Across a range of geometries and flows, it is shown that the agglomeration multigrid

scheme compares very favorably with an unstructured multigrid algorithm that makes

use of independent coarse meshes, both in terms of convergence and elapsed times.

1 Introduction

Multigrid techniques have been successfully used in computational aerodynamics for over a

decade [1, 2]. The main advantage of the multigrid method when solving steady flows is the

enhanced convergence while requiring little additional storage. In addition, multigrid can

be used in conjunction with any convergent base scheme, with adequate care exercised in

constructing proper restriction and prolongation operators between the grids. Perhaps the

biggest advantage of multigrid is the fact that it deals directly with the nonlinear problem

without requiring an elaborate linearization and the attendant storage required to store

the matrix that arises from the linearization. Thus, multigrid techniques have enabled the

practical solution of complex aerodynamic flows using millions of grid points.

The initial efforts in multigrid were directed towards the solution of flows on structured

grids where coarse grids can easily be derived from a given fine grid. Typically, this is done by

omitting alternate grid lines in each dimension. These ideas have been extended to triangular
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grids in two dimensions and to tetrahedral meshes in three dimensions [3, 4, 5, 6]. In previous

work by the second author, a sequence of unnested triangular grids of varying coarseness is

constructed [3]. Piecewise linear interpolation operators are derived during a preprocessing

step by using efficient search procedures. The residuals are restricted to coarse grids in a

conservative manner. It has been shown that such a scheme can consistently obtain conver-

gence rates comparable to those obtained with existing structured grid multigrid methods.

For complex geometries, especially in three dimensions, however, constructing coarse grids

that faithfully represent the complex geometries can become a difficult proposition. Thus,

it is often desirable to derive the coarse grids directly from a given fine grid.

The agglomeration multigrid strategy has been investigated by Lallemand et al. [7] and

Smith [8]. Laliemand et al. use a base scheme where the variables are stored at the vertices

of the triangular mesh, whereas Smith uses a scheme that stores the variables at the centers

of triangles. In the present work, a vertex-based scheme is employed. Two dimensional

triangular grids contain twice as many cells as vertices (neglecting boundary effects), and

three dimensional tetrahedral meshes contain 5 to 6 times more cells than vertices. Thus,

on a given grid, a vertex scheme incurs substantially less computational overhead than a

cell-based scheme, increased accuracy can be expected from a cell-based scheme, since this

involves the solution of a larger number of unknowns. However, the increase in accuracy

does not appear to justify the additional computational overheads, particularly in three
dimensions.

The main idea behind the agglomeration strategy of Lallemand et al. [7] is to agglomerate

the control volumes for the vertices using heuristics. The centroidal dual, composed of

segments of the median of the triangulation, is a collection of the control volumes over

which the Euler equations in integral form are solved. On simple geometries, Lallemand et

al. were able to show thatthe agglomerated mulfigrid technique performed as well as the

multigrid technique which makes use of unnested coarse grids. However, the convergence

rates, especially for the second order accurate version of the scheme, appeared to degrade

somewhat. Furthermore, the vahdation of such a strategy for more complicated geometries

and much finer grids, as well as the incorporation of viscous terms for the Navier-Stokes

equations, remains to be demonstrated. The work of Smith [8] constitutes the basis of a

commercially available computational fluid dynamics code, and as such has been applied to a

number of complex geometries [9]. However, consistently competitive multigrid convergence

rates have yet to be demonstrated.

In the present work,:theaggiomeration multigrid strategy is explored further. The issues

involved in a proper agglomeration and=the implications for the choice of the restriction

and prolongation operators are address_: Finally, flows over non-Simpie=two-dimensional

geometries are solved with the agglomeration multigrid strategy. This approach is compared

with the unstructured multig_d algorithm 0f Mavriplis :[3] which makes use of unnested

coarse grids. Convergence rates as well as CPU times on a Cray Y-MP/1 are compared

using both methods.
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2 Governing equations and discretization

The Euler equations in integral form for a control volume l_ with boundary 012 read

-_ u dv + F(u, n) dS = O. (1)

Here u is the solution vector comprised of the conservative variables: density, the two com-

ponents of momentum, and total energy. The vector F(u, n) represents the inviscid flux

vector for a surface with normal vector n. Equation (1) states that the time rate of change of

the variables inside the control volume is the negative of the net flux of the variables through

the boundaries of the control volume. This net flux through the control volume boundary

is termed the residual. In the present scheme the variables are stored at the vertices of

a triangular mesh. The control volumes are non-overlapping polygons which surround the

vertices of the mesh. They form the dual of the mesh, which is composed of segments of

medians. Associated with each edge of the original mesh is a (segmented) dual edge. The

contour integrals in Equation (1) are replaced by discrete path integrals over the edges of the

control volume. Figure 1 shows a triangulation for a four-element airfoil and Figure 2 shows

the centroidal dual. Each cell in Figure 2 represents a control volume. The path integrals

are computed by using the trapezoidal rule. This can be shown to be equivalent to using a

piecewise linear finite-element discretization. For dissipative terms, a blend of Laplacian and

biharmonic operators is employed, the Laplacian term acting only in the vicinity of shocks.

A multi-stage Runge-Kutta scheme is used to advance the solution in time. In addition, local

time stepping, enthalpy damping and residual averaging are used to accelerate convergence.

The principle behind the multigrid algorithm is that the errors associated with the high

frequencies are annihilated by the carefully chosen smoother (the multi-stage Runge-Kutta

scheme) while the errors associated with the low frequencies are annihilated on the coarser

grids where these frequencies manifest themselves as high frequencies. In previous work [3],

as well as in the present work, only the Laplacian dissipative term (with constant coefficient)

is used on the coarse grids. Thus the fine grid solution itself is second order accurate, while

the solver is only first order accurate on the coarse grids.

3 Details of agglomeration

The agglomeration (referred to also as coarsening) algorithm is a variation on the one used

by Lallemand et al. [7] and is given below:

1. Pick a starting vertex on the surface of one of the airfoils.

2. Agglomerate control volumes associated with its neighboring vertices which are not

already agglomerated.

3. Define a front as comprised of the exterior faces of the agglomerated control volumes.

Place the exposed edges in a queue.

4. Pick the new starting vertex as the unprocessed vertex incident to a new starting edge

which is chosen from the following choices given by order of priority:
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Figure 1: Grid about a four-element airfoil.

• An edge on the front that is on the solid wall.

• An edge on the solid wall.

• An edge on the front that is on the far field boundary.

::0 :An:edge on the far field boundary.

• The first edge in the queue.

5. Go to Step 2 until the control volumes for all vertices have been agglomerated.

There are many other ways of choosing the starting Vertex in Step 4 of the algorithm, but we z

have fo_d the above strategy to be the best. The efficiency of the aggiomerati0n techni-que=

can be characterized by a histogram of the number of fine grid cells comprising each coarse

grid ceil: ideally, each coarse grid ceil will be=made-up_fexact[y'-f6ur _e:g/|cl=c-e]_: _

various strategies can be characterized by how close they come to this ideal case. One

variation is to pick the starting edge randomly from the edges currently on the front. Figure

3 shows a plot of the number of coarse grid cells as a function of the number of fine grid cells

comprising them, with our agglomeration algorithm described above, and with the._variation.

It is clear that our agglomeration algorithm is superior to the variant. The number of_:_arse

grid cells having exactly one fine cell (singletons) is also much smaller with our algorithm

compared to the variant. We have also investigated another variation where the starting

vertex in Step 4 is randomly picked from the field and this turns out to be much worse. It

is possible to identify the singleton cells and agglomerate them with the neighboring _ Cells,

but this has not been done, :

The procedure outlined above is applied recursively to create coarser grids. Figure 4 i

shows an example of the agglomerated coarse grid. The boundaries between the control

volumes on the coarse grids are composed of the edges of the fine grid control volumes. We

have observed that the number of such edges only goes down by a factor of 2 when going from

a fine to a coarse grid. Since the computational load is proportional to the number of edges,
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Figure 2: Centroidal dual for the triangulation of Figure 1.

this is unacceptable in the context of multigrid. However, if we recognize that the multiple

edges separating two control volumes can be replaced by a single edge connecting the end

points, then the number of edges does go down by a factor of 4. Since only a first order

discretization is used on the coarse grids, there is no approximation involved in this step.

If a flux function that involved the geometry in a nonlinear fashion were used, such as the

Roe's approximate Pdemann solver, this is still a very good approximation. It may also be

seen from Figure 4 that once this approximation is made, the degree of a node in this graph

is still 3 i.e., each node in the interior has precisely three edges emanating from it. Thus

the agglomerated grid implies a triangulation of the vertices of a dual graph of the coarse

grid. Trying to reconstruct the triangulation is not a good idea, since this may result in a

graph with intersecting edges (non planar graph), which leads to non-valid triangulations.

If a valid triangulation could always be constructed, it would be possible to use the coarse

grid triangulation for constructing piecewise linear operators for prolongation and restriction

akin to the non-nested multiple grid scheme [3]. In practice, we have often found the implied

coarse grid triangulations to be invalid and therefore the coarse grids are only defined in

terms of control volumes. This has some important implications for the multigrid algorithm

discussed below.

Since the fine grid control volumes comprising a coarse grid control volume are known,

the restriction is similar to that used for structured grids. The residuals are simply summed

from the fine grid cells and the variables are interpolated in an area-weighted manner. For the

prolongation operator, we use a simple injection (a piecewise constant interpolation). This

is an unfortunate but unavoidable consequence of using the agglomeration strategy. A piece-

wise linear prolongation operator implies a triangulation, the avoiding of which is the main

motivation for the agglomeration. However, additional smoothing steps may be employed

to minimize the adverse impact of the injection. This is achieved by applying an averaging

procedure to the injected corrections. In an explicit scheme, solution updates are directly

proportional to the computed residuals. Thus, by analogy, for the multigrid scheme, correc-

653



2000

o Present Ilgoritt'an• Randomvariant

15oo........................................................................
8

...............i..............!............................................
0 : 0 i •

500- .............._......//"'-':"..............".............................

0 i :

• i i

0 : i _ •0 , , " _ ¢ "
0 2 4 6 8 10

No. of f'nuegrid cells

Figure 3: No. of coarse grid cells as a function of the fine grid cells they contain.

tions may be smoothed by a procedure previously deVeloped for implicit residual smoothing

[3]. The implicit equations for the smoothed corrections are solved using two iterations of a

Jacobi scheme after the prolongation at each grid level.

The agglomeration step is arofie as a preprocessing operation on a workstation. It is i

very efficie-n_-a_a em_oys hashing to Combine the multiple =fine _id control volume edges

separating two coarse grid cells into one edge. The time taken to derive 5 coarse grids on a

Silicon Graphics work station model 4D/25 (20 MHz clock) for the grid shown in Figure 1
with 11340 vertices is 83 seconds.

4 ResUlts and discussion

Results are presented for two inviscid flow calculations and the performance of the agglom-

erated multigrid algorithm is compared with that of the non-nested multiple grid multigrid

algorithm of [3]. The first flow considered is flow over an NACA0012 airfoil at a freestream

Mach number of 0.8 and angle of attack of 1.25 °. The dual to the fine grid having 4224

vertices is shown in Figure 5. The sequence of unnested grids (not shown) for use with

the non-nested multigrid algorithm contains 1088, 288 and 80 vertices, respectively. The

agglomerated grids are shown in Figure 6. These grids have 1088, 288 and 80 vertices (re-

gions) as well. Figure 7 shows the convergence histories obtained with the non-nested=_d _:

agglomeration multigrid algorithms. Both the multigrid strategies employ W-cycles. The

convergence histories show that the multigrid algorithm slightly outperforms the agglomera-

tion algorithm. The CPU times required for 100 iterations on the Cray Y-MP/1 ar e 25and-

24 seconds, respectively. Thus the :two-schemes perform equally well. - ...........=

The next case considered is flow over a four-element airfoil. The freestreamMach number

is 0.2 anclthe angle of attack is 5 °. The fine grid has 11340 vertices and is shown in Figure 1.

The coarse grids for use with the non-nested multigrid algorithm (not shown) contain 2942

and 727 vertices. The two agglomerated grids are shown in Figure 8. These grids contain
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Figure 4: An example of an agglomerated coarse grid.

3027 and 822 vertices (regions), respectively. The convergence histories of the non-nested

and agglomeration multigrid algorithms are shown in Figure 9. The convergence histories

are comparable but the convergence is slightly better with the agglomerated multigrid strat-

egy. This is a bit surprising since the original multigrid algorithm employs a piecewise linear

prolongation operator. A possible explanation is that the agglomeration algorithm creates

better coarse grids than those employed in the non-nested algorithm. The CPU times re-

quired on the Cray Y-MP are 59 and 58 seconds with the original and the agglomerated

multigrid, respectively, using three grids.

Perhaps the biggest advantage of the agglomeration algorithm lies in its ability to generate

very coarse grids without any user intervention. Such extremely coarse grids should be

beneficial in multigrid. Figure 10 shows two coarser grids for the four element airfoil case.

These grids contain 63 and 22 vertices, respectively. With these grids it is now possible

to use a 6 level agglomeration multigrid strategy. However, because these coarse grids are

rather nonuniform, it is imperative that the first order coarse grid operator be a strictly

positive scheme (i.e. one can no longer rely on assumptions of grid smoothness as conditions

for stability). With the original first order operator in place, which is composed of a central

difference plus a dissipative flux, it is difficult to guarantee the positivity of the scheme for

arbitrary grids. In fact, the scheme has been found to be unstable on some of the very coarse

and distorted agglomerated meshes. However, if the flux is replaced by a truly first order

upwind flux, given for example by Roe's flux difference splitting [10], a stable scheme can be

recovered for these coarse agglomerated grids. Thus, for each of the coarse grids obtained

by agglomeration, a check of the convergence properties of the coarse grid operator at the

desired flow conditions is carried out if problems are experienced with the multigrid. This

step ensures that the coarse grid operators are convergent and that the problems with the

multigrid, if any, come from the inter-grid communication. Figure 11 shows the convergence

history with the 6 grid level agglomerated multigrid scheme. Also shown is the convergence

with the 3 grid agglomeration multigrid scheme. In this particular case, Roe's upwind flux is
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Figure 5: Dual to the fine grid having 4420 vertices.

used on the two coarsest grids, where central differencing proved unreliable. The time taken

for the 6 grid agglomeration multigrid is 86 seconds. Thus the improved convergence rate is

not entirely reflected in terms of the required comput_atjonal resource. This_ attributed to

"the increased time required by the R0e'supwind scheme, which inv_iy_sasubstantial nTumber

of floating point operations. This case serves to demonstrate the importance of the stability:

of each of the individual coarse grid operators, in the multigrid scheme. Although first order

upwinding has been employed on the distorted coarse meshes for demonstration purposes, it

should be possible to construct stable central difference operators on such meshes.

5 Conclusions

It has been shown that the agglomeration multigrid strategy can be made to approximate

the efficiency of the Unstructured multigrid algorithm using independent, non-nested coarse

meshes, in terms of both convergence rates and CPU times. It is further shown that arbi-

trarily coarse grids can be obtained with the agglomeration technique, although care must

be taken to ensure that the coarse grid operator is convergent on these grids. Agglomeration

has direct applications to three dimensions, where it may be difficult to derive coarse grid:s

that conform to the geomet_( In:_ture work, _alternate:methods of _nerating _coarse grinds

will be investigated. These may include the creation of maximal independent sets to create

the c0arse:grid s e_pqints and using these seedP0int s to agglomerate the fine grid cells

around them. A maximal independent set is a subset of the graph containing only vertices

that are distance 2 apart in the original graph. Since coarsening algorith_ can be viewed as

partitioning strategies, there also exists a possible interplay between agglomerated multigrid

techniques and distributed memory parallel implementations of the algorithm, which should

be further investigated. Finally, the implementation of the viscous terms for Navier-Stokes

flows on arbitrary polygonal control volumes must be carried out for this type of strategy to

be applicable to viscous flows.
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Figure 6: Three agglomerated coarse grids for the NACA0012 test case.
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Figure 7: Convergence histories with the agglomerated and original multigrid.

Figure 8: Two agglomerated coarse grids for the four-element test case.
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Figure 10: Three coarser grids for the four-element test case.
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Figure 11: Convergence histories with the 6-level and 3-level agglomerated multigrid algo-

rithms.
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